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Abstract. Mathematical tools of modern differential geometry are used to derive, in an 
intrinsic formulation, more general results about non-Noether constants of motion. A 
relation between two different ways of obtaining such constants is found by making use 
of Leverrier’s method of determining the characteristic polynomial of a matrix in terms 
of the traces of its increasing powers. 

1. Introduction 

The role played by symmetry principles in classical mechanics has been less important 
than in quantum mechanics, no doubt because the mathematical model describing 
the quantum systems was well established from its very beginning: Hilbert spaces, 
self-adjoint operators, and so on. Furthermore, the mathematical theory of linear 
representations of groups, which has been shown to be a very useful tool, was available 
for physicists. On the other hand, the mathematical framework of classical mechanics 
has not been well defined for a long time. The quantitative dynamics as developed 
by Lagrange, Hamilton, Jacobi, etc during the nineteenth century was unable to solve 
the oldest problems of celestial mechanics. PoincarC pointed out the necessity of 
introducing new methods and concepts, giving rise to the so-called qualitative dynamics 
which makes use of more advanced methods and tools of differential geometry to 
take into account global properties. This program could not be carried out until the 
end of the forties when Cartan developed the calculus of differentiable forms on 
manifolds. The recent development of geometric quantisation has compelled theoreti- 
cal physicists to manage with a lot of geometrical concepts which can be shown to be 
very useful when appropriately used in classical mechanics. We aim to show in this 
paper how some very recent results on non-Noether constants of motion can be stated 
in a simpler way with an intrinsic formulation, allowing a straightforward generalisation 
to more general situations. 

The paper is organised as follows. In 9 2  we present the notations and basic 
definitions to be used. Of particular interest is the graded Lie algebra structure 
introduced by Schouten (1954) and Nijenhuis (1955) (see e.g. Lichnerowicz 1974) 
which will provide us with a method to prove in a straightforward way some of the 
theorems arising in the following sections. In § 3 we consider a Hamiltonian formula- 
tion of the results obtained by Hojman and Harleston (1981) in a Lagrangian formal- 
ism: for any pair of closed admissible two-forms, there are n constants of motion (of 
non-Noether type); some can be trivial. The coordinate-free way we use to express 
these results displays their generality; the explicit expression with coordinates is also 
given. In § 4 we come back to the Lagrange formalism to reformulate, in an intrinsic 
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way, the results of the theorem by Hojman and Harleston (see also Henneaux 1981) 
in a slightly generalised way: instead of equivalent Lagrangians, only two closed 
admissible two-forms are needed. The terminology introduced in this section will be 
used in § 5 to relate these (non-Noether) constants of motion to those found by Lutzky 
(1979) according to an idea of Currie and Saletan (1966). Such a relation makes use 
of some geometrical ideas recently suggested by Giandolfi et a1 (1981). Finally we 
remark how this global approach furnishes more general results than the usual ones 
because a globally defined Lagrangian function is not needed but only a locally defined 
one. 

2. Notations and basic definitions 

A symplectic manifold of dimension 2n is a pair ( M 2 " , w )  where M is a C"- 
differentiable manifold of dimension 2n and w a non-degenerate (maximal rank) 
closed two-form. By TxM and T:M we denote the tangent and cotangent spaces in 
x E M ,  and by T:(M) ,  ( p ,  q E N ), the tensor fields of type ( p ,  4). The non-degenerate 
two-form w furnishes isomorphisms 9 ( x )  : TxM + T:M defined by 4 ( x ) ( u )  = L (U)W (x), 
v E TIM, where L ( U )  denotes contraction with the vector U ;  this allows us to identify, 
pointwise, vector fields on M, X ( M ) ,  and one-forms on M, R'(M), by means of 9. 
The isomorphism can be extended by tensorialisation to a new isomorphism also 
denoted 9, between TE ( M )  and TE ( M ) .  The set of antisymmetric covector fields of 
rank k will be denoted A k ( M ) ,  whereas that of antisymmetric vector fields will be 
written v ~ ( M ) .  

A vector field X on M is said to be a locally (resp. globally) Hamiltonian vector 
field if G ( X )  is a closed one-form, ; ( X ) E Z ' ( M )  (resp. exact one-form, ~ ( X ) E  
B ' ( M ) ) .  For any f~ Ao(M)  = C"(M),  K ' ( d f )  will be written Xf. Similarly, if a E 
A k ( M ) ,  the element $ - ' ( a ) €  V k ( M )  will be denoted X,. Then, if X is a globally 
Hamiltonian vector field, there is f E Ao(M) such that X = X f .  

By a Hamiltonian dynamical system, we mean a triplet (M, w ,  X )  where (M, 0) is 
a symplectic manifold and X a globally Hamiltonian vector field on M, i.e. there is 
a function HEAO(M) ,  called the Hamiltonian function, such that X =X,. The 
Hamiltonian dynamical system is sometimes written (M, w, H ) .  The Hamiltonian 
function is also called the dynamics of the system. 

On T ( M )  = @ k > O  T i  ( M ) ,  a graded Lie algebra structure can be defined as follows. 
If X E Tg ( M )  and Y E T %  ( M ) ,  [X ,  Y ]  E Tgtq-' ( M )  is defined as 

L([X,  Y])a  =( - l )"" '"~(X)d~(Y)cx  + ( - l ) P ~ ( Y ) d ~ ( X ) a  (2.1) 

for any a E A(M).  Notice that the degree of elements in T f ;  ( M )  is p - 1 ,  and that if 
X ,  Y E  TA ( M )  then [X ,  Y ]  is just the usual Lie bracket of vector fields. 

The Lie derivative of a vector field can be expressed in terms of the brackets (2.1) 
(see e.g. Lichnerowicz 1974) as 

L (LxY)a  = L ( X )  dL ( Y ) a  - L ( Y )  dL ( X ) a  = L ( [X ,  Y ] ) (Y .  (2 .2 )  

The graded Lie algebra structure properties are also to be recalled, 

Ix, Y l =  ( - l ) p q [ Y ,  X I ,  ( 2 . 3 ~ )  

(-1)"[[Y, z ] , X ] + ( - l ) " [ [ Z ,  XI ,  Y ]+( -1 )" ' [ [X ,  Y ] ,  Z ] = O ,  ( 2 . 3 6 )  
where X E Tf;+' ( M ) ,  Y E  Tz+' ( M )  and Z E T;+' ( M ) .  
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The symplectic structure (M, w )  leads to the following properties which will be 
used in the next section. If X ,  = d-'(w), then X, E Vz ( M )  is such that 

[X,, X , l=  0. ( 2 . 4 )  

d [X,, A ]  = d d  (A) .  ( 2 . 5 )  

Furthermore, for any A E T &  ( M )  

3. Admissible two-forms and constants of motion in a Hamiltonian formalism 

A closed two-form w '  E Z 2 ( M )  is said to be admissible for the Hamiltonian system 
(M, w, H )  if w '  is invariant under XH,  i.e. Lx#' = 0. Therefore, L ( X ~ ) W '  E Z ' ( M ) .  

In the Hamiltonian formalism, a theorem corresponding to that of Hojman and 
Harleston (1981) can be stated with this language, as follows. 

Theorem 1. Let w,, Q = 1 , 2  be two closed two-forms. If w 1  is a non-degenerate 
two-form and they are both admissible for the dynamical system (M, w ,  X H ) ,  then 
wz(X,,) is a constant of motion. 

Proof. The Lie derivative LXHw2(XW1) is given by 

LX#2(xwl) =LX&(xol)wZ = (X,,)LXH~~+L([X,,,XHI)~~. 
As w2 is an admissible closed two-form, LX#z = 0. On the other hand, we can use 
(2 .5 )  to see that [X,,, XH] = 0, and therefore L , y ~ w 2 ( X ~ , )  = 0. In fact, from (2 .5 )  we 
obtain 

di([X,,, X H ] )  = d w i ( X ~ )  =d(L(XH)Wi) =o.  
Notice that the results of the former theorem mean that the trace of the tensor 

of type ( 2 , 2 ) ,  X,, 0 wzr is a consta,nt of motion. The generalisation of this result is 
straightforward. 

Theorem 2. With the same hypotheses as theorem 1, the trace of the tensor of type 
( 2 k ,  2 k ) ,  k s n, given by 

is also a constant of motion. 

Proof. Let Cj denote the contraction between the ith covariant and jth contravariant 
indices; then the Lie derivative of Tr pk = C:C; * cbk is given by 

LxH Tr P k  = c: * ' * C k x ,  (xu1 0 0 2 )  @ ' * @ (xu1 @ W Z ) .  

If we made use of Lx#, = 0 as well as LxJ,, = 0, which may be seen to be true 
because from ( 2 . 2 )  

LXJIIJ 1 = [XH, xu 1 1, 
we obtain that LxH Tr P k  = 0. 

Now physicists are used to writing explicit expressions of the constants of motion 
in a coordinate-dependent way, namely, by using local charts; as w 1  is non-degenerate, 
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there is a symplectic atlas such that we can locally write w 1  in an appropriate chart 
(U, 4) ,  as wllu = dpi A dq' where repeated indices summation is understood. The local 
expression of w2 in the same chart will be w2lU = a " dp, A dpj + b i' dp, A dq' + c ,' dq A dq', 
or in a matrix form 

{ w 2 / u l =  

Moreover, the two-vector X,, is given by 

~ ~ , l u  = -(a/api) A 8/84, 

which we will write in matrix form 

The contraction of (3.2) and (3.3) leads to 

w2(Xwl)/u = 2 Tr(b ") = 26 i i  (3.4) 

which are the constants referred to in theorem 1 and which correspond to those found 
by Hojman and Harleston in a Lagrangian formalism. The corresponding constants 
of theorem 2 are similarly found to be 

Tr pklu = 2 Tr{B '}. (3.5) 

When the matrices A or C vanish. 

4. The Lagragian formalism: Hojman and Harleston theorem 

In the Lagrangian formalism the carrier space for the dynamics is the tangent bundle 
TQ of a configuration space Q which is a differentiable manifold. The Lagrangian 
is a function LEAO(TQ) which will be assumed to be regular, i.e. the Legendre 
transformation, DL : TQ + T*Q, is to be a local diffeomorphism. We recall that the 
map DL is defined as Dt(q, U )  = (4, dL,(q, U)), where L, : T,Q + R is given by the 
restriction L, = LITqQ. The natural symplectic structure on the cotangent bundle T*Q 
can be transported to TO. The canonical two-form w o  in T*Q is pulled back to a 
non-degenerate closed two-form wL = D ~ w o ,  on TO. The local inverse of DL gives a 
function H E  Ao(T*Q) which permits us to define a dynamics in T*Q, i.e. a vector 
field Xk. The (locally) corresponding vector field on TQ will be denoted XE, and 
therefore DL*XE = XH. The vector field XE is globally Hamiltonian; if the Lagrangian 
action A is defined as a function A : TQ + R, given by A(q, U )  = DL(qr v ) ( v ) ,  the 
function defining the vector field X E  by L(X€)WL = dE is E = A  - L .  The triplet 
(TQ, wL, XE) is called a regular Lagrangian system. More information can be found 
in Abraham and Marsden (1978). 

With this notation we are able to state the concept of equivalent Lagrangians: two 
Lagrangian functions L, (a = 1,2) are said to be equivalent if they give rise to the 
same dynamical vector field on TQ, namely if X,, = X E z .  In this case LXEwL, = 0, 
a = 1,2. 

Given a dynamical vector field on TQ, X ,  a closed two-form is said to be an 
admissible two-form if L ( X ) w  is a closed one-form. Then, if two Lagrangian functions 
are equivalent, the dynamical corresponding closed two-forms wL, are admissible 
two-forms for the same dynamical vector field. 
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The theorem by Hojman and Harleston (HH) was stated for the case of equivalent 
Lagrangian functions. It can also be formulated in a more general case and in an 
intrinsic coordinate-free way, as follows. 

Theorem 3. Let (TQ,wL,XE) be a regular Lagrangian dynamical system. If wa, 
a = 1,2, are two admissible closed two-forms for the dynamics XE and w 1  is non- 
degenerate, then the trace of the tensor Pk = (Xul @ w2)@ is a constant of motion for 
any positive integer number k. 

The results of the HH theorem arise now as a corollary. 

Corollary. Given two equivalent Lagrangians L1,  Lz ,  and if L1 is regular, then the 
trace of the tensor 

is a constant of motion, for any positive integer number k. 
The proof of the theorem follows the pattern of that of theorem 2 and will not 

be given. Instead we will express the two-forms wL, arising in the corollary in particular 
coordinates in order to recover the results of the HH theorem. Both two-forms are 
expressed in a coordinate chart 

while 

where {A,}kj = a2L,/a(i 34'. Therefore Tr p1 = Tr(XuL1 0 wLz) = Tr{AY1A2}. A 
similar expression holds for k > 1, namely Tr P k  =Tr{(AT1A2)k}. This is the way in 
which HH presented their results. 

5. Non-Noether constants of motion 

It was recently shown that if L1 and L2 are two equivalent Lagrangians, the quotient 
det Al/det  A2 is a constant of the motion (Lutzky 1979, Giandolfi et al 1981). This 
result generalises that of Currie and Saletan (1966) for the particular case n = 1. The 
proof given by Giandolfi et a1 (1981) is particularly simple and beautiful: we feel the 
convenience of spending a little time in summing up such a derivation because it leads 
in a natural way to the concept of a pencil of admissible Lagrangian functions which 
will permit us to compare non-Noether constants of motion found by Giandolfi et a1 
with those of the Hojman and Harleston theorem. 

Let L1 be a regular Lagrangian; the closed two-form wL1 is a nondegenerate and 
(wLl)*" is a basis for the C"(TQ)-module A2"(TQ). If L2  is a Lagrangian function 
equivalent to an L1,  then (wLz)*" = fo(wL,)"" and it is quite easy to check that fo is a 
constant of motion; on a coordinate chart such a constant is but the quotient of the 
determinant quoted above. Moreover, Giandolfi et a1 proposed new constants of 
motion f k  given by the relation 

( W L J  - k )  A ( ~ L I ) ' ~  =fk(WLl) '"  (5.1) 
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which they called non-Noether constants of motion. Notice that on the left-hand side 
arise the coefficients of the different powers of A in ( w ~ ~ - A o J ~ , ) " ~ .  This fact suggests 
the introduction of the following definitions. 

Let (TO, wL, X,) be a regular Lagrangian system, and w 1  and w 2  admissible closed 
two-forms for XE, w 1  being regular. The pencil of admissible closed two-forms defined 
by them is the set 

J F Carin'ena and L A Ibort 

{w2-hwllh E R } .  

The real function f : R x TQ + R defined by 

(w2 - hw 1)' = f ( A  )w 1' (5.2) 

is called the characteristic function of the pencil. 

pencil of admissible closed two-forms for the common dynamical vector field. 
In particular, if L' is a Lagrange function equivalent to L, wL and wL, define the 

w ( L ' - A L )  = WL' - AWL. 

Theorem 4. The characteristic function of the pencil of admissible closed two-forms, 
w 2  -Awl, for the regular Lagrangian system (TQ, wL, XE) is a constant of the motion. 

Proof. As w, (a = 1,2) are admissible closed two-forms, LxEw, = 0, and consequently 
LxE(w2-Awl) = 0. When we identify the Lie derivatives of both sides of equation 
(5.2) we find that LxEf(A) = 0. 

Notice that when comparing (5.1) and (5.2) for w ,  =wL,  we see that f ( A )  = 

Moreover, when the admissible closed two-forms w, defining the pencils are defined 
by two Lagrange functions La (a = 1,2) ,  the local expressions in coordinates are as 
in (4.1), i.e. the matrices associated with the two-forms U,  are 

A ' f k .  

Theorem 5. Let (TO, WL, XE) be a regular Lagrangian system and L1, L2  two Larangian 
functions such that wL1,  wL2 are admissible closed two-forms for XE, L1 being regular. 
The characteristic function of the pencil in a chart is given by f ( A ) I U  = det(A2A;' - A )  
with A as in the preceding theorem. 

Proof. The expressions in coordinates of wL1,  wL2 and wL1 - A O L ~  lead to 

(wL,lU)*" = det(A,) dq' A dq2 A . .  . A dq" A dql . . . A dq", 

( w ( ~ ~ - ~ ~ ~ ) ) ~ ~  =de t (A2- -AAl )dq1~dq2 . .  . ~ d 4 "  ~ d q ' .  . . ~ d q " ,  

and therefore 

( W ~ ~ - A W L ~ ) * "  =det(A2-AA1)det(A;')(det(A1)d~' A . .  .Add" ~ d q ' .  . . Adq"). 

det(A2Ay1-A) =det(A;'A2-A). 
Then the characteristic function f ( A )  in the chart considered is given by f ( A ) i v  = 
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The results of the theorem include those of Hojman and Harleston, as we can 
realise by making use of the Le Verrier method of determining the characteristic 
equation of a matrix (see e.g. Wilkinson 1965): the coefficients c k  of the characteristic 
equation of the matrix M are related to the traces of increasing powers M k ,  U k ,  by 
means of Newton's equations: 

c 1 =  - u 1 ,  k C k = - ( U k  + c l u k - 1 + .  . . + C k - l U l ) ,  k > 2 .  

In the particular case of M being the matrix AT'A2, we will find the following 
relation between the Hojman-Harleston constants of motion P k  = Tr P k  and those of 
theorem 5 .  

f 1 =  -p1, k f k  = -(Pk + f i P k - i  i-. + f k - i P i ) .  

Before ending this paper, we would like to remark that the above results hold 
even if there are no global Lagrangians L,., but both of them are locally Lagrangian, 
i.e. w, are exact forms, w, = de,, such that de, = 0, where d denotes vertical derivative 
(Godbillon 1969): in that case, for any m E TO there is a neighbourhood U of m and 
C"(V)  functions L, such that w,lU = wL, = d(dL,). 
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